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GENERATION OF A MULTIVARIATE DISTRIBUTION
FOR SPECIFIED UNIVARIATE MARGEINALS AND

COVARIANCE STRUCTURE

l. INTRODUCTION

During a discussion pursuant to a proposed new nonlinear convolution
filter of the Wiener type [1], the problem arose of verifying the accuracy
of this filter with respect to the standard linear Wiener filter. This
would require the generation of a nongaussian stochastic process, since
for the gaussian case, for simple additive noise, the linear filter cannot
be improved upon. (See, e.g., [5], Chapter 3.) For purposes of
sensitivity analysis, it was agreed that choice of the scalar marginal
random variables and covariance structure of the stochastic process
should be made as wide as possible.

Consequently, the following three-stage statistical problem arose:

Given a set of univariate marginal probability distributions:

(1) Determine the class of possible correlations between random
variables having these distributions.

(2) Determine, for each allowable set of correlations in (1), a
corresponding (joint) stochastic process yielding back the given set of
marginals.

(3) Establish a procedure for generating outeomes of each stochastic

process specified in (2).
Manuscript submitted October 24, 1980.




This brief memorandum addresses itself to the above problem, and
under mild restrictions, answers it in the affirmative , when the set of
univariate probability distributions is finite.

In treating this problem, two byproducts resulted: A simple method
for the special case of determining a bivariate distribution, given two
marginals; and a transform of probability technique from a multivariate
uniform to any of a wide class of multivariate distributions, generalizing
the well-known univariate procedure. These results are presented in

Appendices A and B.
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Following a cursory view of the available literature, Johnson and
Kotz’ text [2], Chapter 34 (pp. 1-36) and Chapter 42 (pp. 273 et passim)
was found to present a brief survey of techniques which relate to part (2)
of the problem posed here, without involving explicitly the specification
of the covariance structure. Mardia's monograph [3] has a much more
extensive treatment of the problem. Some of the results presented here
are, in part, extensions of the Fréchet-Nataf 'translation method' for
bivariate families (which do not particularly address the specification
of the covariance matrices), exhibited in [3].

In the following development, let, for each index i, i =1, ... , m,
X be any univariate marginal random variable with ordinary probability
density function fi, probability distribution function Fi’ mean ui,
variance T = oiz, median ei and mean absolute deviation about the
median Vis all assumed known.

As usual, EF(é) and C&vF(%) denote expectation and covariance matrix
of random variable é with respect to distribution F, etc.

¥ denotes the probability distribution function corresponding to the
standardized normal scaler distribution n(0, 1), while § denotes the
probability density function for n(0, 1). Qm 2£ (pij)ljj,jfm denotes
,an arbitrary (positive semidefinite) m by m correlation matrix, where
p;; 21 and ]p l._ 1, bij = corr(é.,éj) E(é -y, )(x ; »(c c ).

Denote alsol.' f"—i(])(m by 1), T —(bql) df (g) (m by n.
X g(:‘) , Xm af (xl) , where X, eR is any outcome of marginal random

Xm o
variable % (which can be arbitrary, unless specified) corresponding to
fi; i=1, ... , m All monotonic properties of distribution functions
and positiveness of densities are with respect to an assumed interval of

support.




For @ =1 and | °] T, define the functions F(:;Q ): R™ + [0,1],
m, m m m m

where for any Xm eRm,

af T

FIX ;1) = iE] Fo(x;) , (1)
T, df .

Fix 51 1) = ;.T:':'”,mFi(xi) . (2)
%

. m m
Define also F(m):R + [0,1], by, for all XmeR .

# df
oy ) Lomax(._ 20 Filx) = (a-1), 0) (3)

Then the following properties hold (see [3], pp. 30-35, for the
bivariate case of m = 2):
Lemma |
. g T * R -
(a) F( ,Im), F( A ), and F(m) 2re all m-variate probability

distributions possessing F Fm as marginal distributions.

1,..,

(b) For any joint probability distribution Fl m’ possessing

marginal distributions F Fm as above, for all xmeRm,

| I

T

F?m)(xm) E-Fl,...,m(xm) S-F(xm;]m"m ). (&)

(Proof: Omitted as a straightforward generalization of the results
in [31.)

Remarks

1. Note the case of F = F( ,Im) for (4); F( ,Im) is the probability

distribution function corresponding to X1 Xm being statistically

geeey

e
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independent.
T .
2. F( ,lm-lm ) corresponds to él,...,‘m all being monotone

increasing functions of each other. This implies the unique relation

Fle) = Flg) = o+ = FGe) (5)

%= F ) i,

provided each Fi is a monotone increasing function. Thus, if g:Rm + R is
any function,

' X

]
. T - -1 )
XE{mg(X)dF(X,lmlm) ALY z,(x,) YdF, (x))
! FUR (x ) ., (6)

among several representations.
%
3. F(m) corresponds to the functional relation

m

ELACRELRRRE (7)
Lemma 2
For any i # j, 1 < i, j <m, and any joint probability distribution

Fi j possessing fixed marginal distributions Fi’ Fj’ and densities fi'

fj’ with fj >0




Lv;‘::.._-‘—. gt o2 - R
2
o | f;_EFi’j((xi - xj) ) f-Bij (8)
where
df 2
o = En( ;]2‘;)(.(,)\5i - ,gj) )
= Ll - F R )RR () (9)

x.€R
i

= -l - 2 .
xjgg(Fi (Fj(xj)) xj) dFj(xj) ;
J

the latter two relations holding, if Fi and Fj are monotone increasing;

and

df 2
B“. = EF’fz)((&(’i K.j) ) (1o)

-1 2
= x.{R(xi - Fj (I-Fi(xi))) dFi(xi)
1

L T _ 2
x.ék(Fi (1 Fj(xj)) xj) dFj(xj)
i

Again, the last two equalities hold, if Fi and Fj are monotone increasing.

Upper equality in (8) holds for Fi I F( ;IZ-lZT); lower equality

- E*
holds for Fij F(z).

( Proof:

Using Fubini's Theorem on iterated integration and Lemma 1 (a) for

m= 2,

5
;
i
!




2
(xi-xj) dF(llj)(xilxj))dFj(xj) R -
11

E (’Ei-éj)z - f (S (x'-x )dFE lj )(x |x )dF (x )

T
F( ’]2‘2 ) Xj€R Xi?_XJ

Now the conditional distribution functions F(ilj)(xi|xj) =

(0)
Fij(xi’xj)/fj(xj) and F(i|j

Thus Lemma 1 (b) (eq. (4)) implies that for all xi,xst, F(;

T {
)(xilxj) = Flxpaxgilyly )76 (x)). j

)(lexj) < ;.

(0) 2 .
F s . . . . - . f. - . . - - f - .
(IIJ)(xlli) Since for X; ixed, (x; xJ) is an increasing function in

X;, it follows that (see, e.g., Lehmann [4), page 73, Lemma 1 and, page

e av e ae

112, Example 11) for all X Z_xj, for any fixed Xj

' J (x-x)dF(I)(xIx)
i x >x
: —J (12)

v

s (X'X)dFEI)(xIx)

X iZXJ

Substituting (11) into (12) yields the lower inequality in (8).

By a similar argument, reversing inequalities from Lemma 1, yields

the upper inequality in (8). )

>}

The next result establishes the allowable range of values for

Corr(ki,§j) for given marginal densities fi and fj.

Theorem |

Let éi’éj correspond to fixed densities fi’fj’ respectively,which

are positive, for i # j; 1 < i, j<m.

Then for any joint bivariate distribution Fij possessing marginals




;
!

=

TR Corr,_-ij(xi.xj) £T; (13)
where
2 2 2
0.“+0.”+ (u,~u.)" - 8,.
\ daf % 1 (u, uJ) il am)
ij — ZOiU. ’
c.z +0.2 4 (u.-u.)2 ~a..
r, 4 L = (15)
ij = 2°i°j !

and aij’ Bij are given in Eqs. (9) and (10).
( Proof:

Using Lemma 2, expand out the expectation in Eq. (8), yielding a
bound on EFij(éi"j). Subtracting M and dividing by oioj yields
the final results. ) a
Remarks

Suppose i # j; 1 <, j<m.

. . R . = F* .
1. Upper equality to Tij in (3) is achieved for Fij F(Z)’

. T
lower equality to Yij’ for Fij F( ,l2 12). Thus, -1 iYi' _<_'I’ij < 1.

J
2. Assuming that Fi and Fj are monotone increasing:

. 2 2
Typ= 1 Iff oy, = (Gi'aj) + (ui-uj) s - (e)
. 2 2
Y " -1 iff BU. - (oi+oj) + (ui-uj) . (17)

A sufficient condition for Tij = | to hold is




for any constants b;j and a;j > 0. (Thus, it holds for Fi = Fj.) This
value is achieved if x., = al.'x, + b7, = F.-](F.(x.)).
! 4 tJ t J J
A sufficient condition for Yij = -] to hold is

Fi(‘) = I-FJ.((bi‘Jf--)/ai’Jf) s (19)

for any constants b;; and a;} > 0. This value is achieved if

_ . PO -1
i =7 an) X + b77 = F, (]-Fj(éj))'

j ij i
3. In particular (corresponding to b;j =0, a;j= 1, b;} = Zhi,
3;3 =1), if Fi = Fj and is a symmetric function about M, = uj, i.e.

Fi(xi) =1 - Fi(Zui - xi), for all xieR, then it follows that aij = 0

(this does not require the symmetry condition), Tij =1, Bij = hoiz =

2
bo.®, andY.. = ~1.
J n ‘r'J

O
Now, denote for any m by m correlation matrix Qm, the m-variate

zero-mean gaussian distribution Nm(om,Qm) with corresponding probability
density function Whm and probability distribution function Wﬂm' Define,
for given monotone increasing marginal distribution functions F], vee s

Fm stransform Tm:Rm > Rm, where, for any XmeRm,

Fo )
T (x) &£ d , (20)
m m

-1
Fohwx )

with the inverse transform

——




L e -t A

L v ()
T x ) = : (21)
"o v (F(x )

Next, define the function F( ;Qm): R™ > [0,1], where for any

x_erR™,
m
-1
. =V
Flify) = %o (1,7 0)) (22)
(See [3}, pp. 30-35, for the case m = 2.)
v
Finally, et ¥m= ?‘ be any random variable corresponding to

v,
N (0 ,2). (Thus, eac ”3. is distributed as n(0,1).)
momm nd

The major result of this is presented in the following theorem:
Theorem 2  (Extension of Fréchet-Nataf's Translation Method [3])

Let F Fm be m given monotone increasing scalar marginal
’

...

probability distribution functions with corresponding positive densities

f f , and random variables x X .
lyeeey, m b, ,Aam

»

Then, for any correlation matrix m- (p ij)ljj,jfm (which must be

always at least positive semidefinite) such that
Y.. <p;, <T.. , (23)

where Yij and Tij are given in eqs. (i14) and (15), for all i # j,
1 <i,j<m:
(a) There exists a corresponding correlation matrix Qm = (pij)

such that F( ;Qm) is a joint m-variate probability distribution of random

1<i, j<m

X
variable {m 22 (:l , which, possesses marginal probability distribution

10
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functions, densities and random variables FI""mep"'fm’ and A, ... %
respectively, such that
i
i
Corr (X ) = Q7 . (24)
F(-38) (
(b) Random variable Xq can be considered in the following functional ;
:i relationship with respect to xm: -?
X =T (V . 2
M m(mm) (25)

(T.. = 1), the upper bound in eq. (23), we

(c) For & mo (T ljj,jjm ii

ij)

can choose @ =1 -1 T and F(:;1 1 T) is the same as previously defined
m m m mm

in Eq. (2).

(d) For Qm = Im, we can choose Qm = Im and F(-;Im) is the same as

previously defined in €q. (1).

{e) For Q; with at least some entires p;j = Yij’ the lower bounds in (23),

we can choose corespondingly in Qm’ pij = =1, which yields the bivariate
NN % s
Fij F( ’(-l) (_‘) ) = F(z), as given in Eq. (3).

( Proofs:

(b) follows from (22). (c), (d), (e) all follow from basic properties
of m-variate gaussian distributions.
For (a): Without loss of generality, consider for any Qm, the first

marginal component of F(Xm;Qm):

X ¥R, ()
FOsa )y = FOT°) 0 =¥ (Y0 )
<0 oY)

11
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Remarks

- -1 ’
=Y . = Y(Y F - .
G LRI EERS

Thus, {F( ;R )|Q 1s arb. pos. semidefinite} js a family ef m-variate
distributions of km yielding back the required marginals. Clearly,
for any fixed i 4 j ,  Corrg ;gm)(éi’éj) is indeed

a continuous function of Qm = In fact,of p‘j-which achieves its maximum

T

value (see Theorem | and ensuing remarks) Ti]’ for Qm = lmlm (pij =1),

and its minimal value Yij’ for Qm such that pij = -], i.e., for bivariate
% 1 1%
marginal Fij Fia) = F( ’(-I)(-l) ). Thus, Corrp( ;Qm)(éi’éj) can take any

value between Y., and T,. by proper choice ofdl .)
ij 13 m

1. i f Fl = F2 = .. = Fm is a symmetric function about mean ¥,

(F'(x]) =1 - FI(ZuI-xl)), then Yij = -1 and Tij = 1, and thus, @~ In

Theorem 2 can be arbitrary (and (23) is always satisfied). ;

2. Rewriting 'q. (24) in scalar form

p'ij = Corrixiéxg) E Corr(xi,xj) , ' (26)
F( 3 Y %
" iy ’(f’ijll))

for any given Yij ipi‘j -<-Tij’ where Fij is the corresponding bivar-

iate marginal distribution function of F, and o, = (pij) .

1<i, j<m

Lancaster and Kendall & Stuart (see (3], page 33) have shown that for all

153, j<m,

ID;J L= oyl - (27)

12




with strict inequality holding in (27) for i # j, wunless the Fi's are
all qaussian distributions.
For any given D;j, with strict inequalities both holding in (23),

solving for Pij in (26) is equivalent to solving for pij in:

pi‘j = Hij(oij) (28)

L oyop 7, v D) 7Gxt )

(:})e RZ oy - (vi,vjﬂdvidvj

where

v ) = OeneApd ) cep-( 101062

1 p,.
oij ] (VT 2o vivi) Y (29)

Thus, for purposes of implementation, the integral on the right hand

el R SR 1

side of (28), Hij(pij) should be tabulated as a function of T for
-1 < Pi; < 1. Then that °ij satisfying (28) could be found by a graphical
method.

3. For m=2, an alternative simple method for constructing the joint bi-

variate probability distribution for specified marginals FI and F2 is

presented in Appendix A.

L, For general m again, Eq. (25) can be used to generate outcomes of

ﬁm' This thus depends on the generation of outcomes of xm. A standard
. . . T

procedure, is to first in effect decompose Qm = Pm Dm Pm » where Pm

is the orthonormal matrix of eigenvectors and Dm is the diagonal matrix j

of eigenvalues of Q- Then the random variable xm can be written as

13
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¥
V. =P W, where random variable W _ ={ . is distributed N_(0,D0 ).
Am m um by y m m
am

Hence, the wi's are distributed statistically independent with W,
v N

distributed n(0, diz) where

p &

m

Finally, we can apply the fundamental transformation

of probability from a uniformly distributed random variable 2; over

fo,1] : w, = V‘](zi) ; i=1,..,m. Hence we can first generate statis-
i N

tically independently outcomes Zy5es2 obtaining in turn, outcomes

W W forming Hm’ and in turn finally, Xm'

],-o

5. An alternative procedure for not only generating xm, but for
obtaining essentially any m-variate random variable by a transform of
probability from any convenient initial m-variate random variable - such
as a uniformly distributed one over the unit m-cube - is given in
Appendix B. This technique could be of especial use when non gaussian
random variables are sought and/or when m is large, since no matrix,
inversion is required. However, the forms of the marginal probability

distribution functions are required.

14
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11}, SUMMARY

The problem of constructing and realizing outcomes for a multivariate
distribution compatible with arbitrary given scalar marginal distributions
and having a specified correlation matrix has been considered here. The
problem is essentially answered in the affirmative in Theorem 2. In addi-
tion, an apparently new multivariate transformation of probability techni-
que which is triangular in form is presented (Appendix B) for generating

outcomes of a given random variable from a more convenient distribution.
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APPENDIX A

Alternative Construction of a Bivariate

Distribution for Specified Marginal Distributions

and Covariance Matrix

Let be two given marginal scalar random variables with prob-

X
N A2
ability density functions fl’ fz continuous about their medians el, 62
possessing (finite) variances 012, 022 ; denote their absolute first

moments about their medians by MY s ug o respectively.

tet Y= (o)

T be any given positive semidefinite matrix,
I i, j<2

such that
Ges ® g.° 3 i=1, 2 (A-1)
and

logal < Min(ufz, uiz) . (A-2)

Define functions f and hi by, for all outcomes

X
X = (x‘)g Rz,
2
2

2
F0E mFx)+ 0 onx), (A-3)

j=] i=]

fi(xi) , for all «x, > 8,
(A-b4)
-fi(xi) , for all X, < 8,

df i
hi(xi) = Ai

and




%y
Then f is a joint probability density function of )‘(’-d;f- (x .

2

N

having marginal p.d.f.'s f., f, and such that with respect to f,

1”72

Elx,)
£ =\ e(x,) and  Cov(R) = 2 . (A-6)

Proof:
Since (A-2) and (A-5) imply I € 1, then (A-3) and (A-4) imply
that f(X) >0, for all Xe RZ, Clearly, by construction in (A-4)

$0 .
J hi(xdx, =05 im1,2 (A-7)

xis-m .

implying

2
f f(Xx)dx = Iigl 1:;(:15)6)6.i = |

m
X eR Xe‘iz

and f is thus a p.d.f.

Also, for example, from (A-7),

4o
J ey, = £ 0
X  Ew©

2
= fl(x‘) b2

verifying that the marginal p.d.f.'s of f are fl and f2.

Now

18




” E(X) = fxf(x)dx = (j'x f(X)dX)) » i
Xe R Xe R™ 1<i<2 -

where, for example, using (A-7) again

+o0
j X) f(X)dX = fxif‘(x])dx| +

Xe Rz xl=-°°

4+

jx hl(x )dx th(x )dx2

X] x ==

= Elxy).

Finally,

LA,

Cov(y) = (xj';x 'E(,’S.i))(xj‘E(’.Sj))f(X)d)gRi’jq ,
. <is

i

For i=j, using (A-7)

var()h) = J'(x -E(x )) «f(x)d(x)
Xe R

o
f(xi-E("‘-i))zfi(xi)dxi) TT If(x )dX, ’

, =00 < 52 ==-®
X, J;j" )xJ
+o o
v JomeGZon ax) s T Fn (x)axg
X, == 1<js2\x ==
i
J#!
= J'(x -E(x )) f. (x )dx
x E L1 4
- 0'2 »

19
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T

Bty .- .

for i =1,2.

Fori#j, ioe.’i.]'jsz’

COV(%I,QZ)

using (A-7)

- f("l'E(x])(xz-E(x )) £(X) dX
mo 1%
Xe R
+o +o
i xjsle-E("\(:l))fl(xl)dxl) (XI.S:Z'E(QZ))fz("z\,dxz)
! 2
+.
o +x
x_ILE:]-E(:]))hI(x’)dxl)o(XI-SZZ'E(')CZ))hZ(xZ)dXZ).
2
= 0.0+
+o +
x]=£:]-e|)h‘(x‘)dxl)(xj-(:t&-ez)hz(xz)dxz) ,
= A]oul‘-kz.uz‘
= 012 ¢ ;

20




APPENDIX B

Multivariate Transformation of Probability

Technique for Generating Outcomes of

Arbitrary Random Variables

The univariate transform Y = F(X) of a random variable X with

continuous cumulative probability distribution F causes Y to be

uniformly distributed over [0,1]. This widely known result is perhaps
the most useful in simulating outcomes of one dimensional random variables. '
(See, e.g., the basic texts of Fisz, Wilks, Cramér, Feller, etc.) However,

the multivariate extension of this transform is another matter and this

s NS e Wl M Ay i

author, to the best of his knowledge, has not seen such a result.

This appendix displays a natural extension of the fundamental trans-

form of probability theory, which hopefully will be of help in simulating

outcomes of arbitrary multivariate random variables.

b3
Let X = ., be a given random vector over R™ with positive
n .

X
a,M

m m

probability density function f. Define transform Tf: R" 5 R by,
% m
for any outcome X = | e R,
m
Te(x) A
f - Y ’ (8-1)
Tf‘,m(x)

ﬁ .
Tf’i(x) (l/fi+|(x(i+‘))) g, M= x(i"‘l)

X

S,
f fi((---‘--))dsi . (8-2)
i




for i =1}, .. ,m and, for j=1, .., m,

X,
J
X(j) b | x4 , (8~3)
X
m

and fj is the probability density function of marginal random vector

X,. where also
m(J)

JI x(m+l) .dr-f-¢ and fm](x(ml)) g 1, and note the special

case X(l) = X, fl = f,

Then, the random vector Y = Tf(X) is uniformly distributed over the
L ~

m-cube [0,l]m.

-4 A it ¥

¢ Proof:

First note that

e T /S SIEEE

+w S,
Te, i 0 < QF G Xy [ x0T ) ds,
S}=°eo ('+l)

= O G D i B ay)
= | ,

for i =1, .., m, implying, for all Xe R" , 1

Tf(x) € [op]]m [

Next, it easily follows that

dT.(x) } anl,(X)
dX 9%,
] 1<i, j<m
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is an upper triangular matrix, i.e.,

e ()
Dl __ -9 (B-6)
axj

if j<i ; 1<i,jm, with (2) implying

aT,. . (X)
£, £.(X,.y)
— . (l)/fsﬂ(x(m)) ’ (8-7)

axi

for i=1,..,m.

Hence, (B-5) - (B-7) implies

a7 .(X) m 3T, .(X)
f f
|det ( et LR —;;—:—-—— (8-8)
= f(X) ’

The positivity of f implies that from (B-2), for x(i+l) fixed,
T, i(X) as a function o x, only, is monotone increasing fer i=1,..,m,

implying that T is a one-to-one function. Indeed, by defining, for any

fixed X,. , the function F. , where for any X ¢ R,
(!""‘) l’x(i+l)
X
F. (x) af f f. ( '5""))ds , (8-9)
I;X(i+]) s=-m [} (X(i+])

for i=1,..,m, with the special case
F (x) f()
x s
) = F(x) = f ds,
m,X(m+]) m s_.mm

and denoting the functional inverse by F , then it follows that

i




T

A — T e
the inverse transform T;l: R > R™ s obtained, for any outcome
£
Y=|! , by successive substitution:
m
-1
e, (1)
=l df T,
x = T (Y) —— -l . » (B-IO)
Tf,m (¥)
where using the X(i) notation
- =l df -1
Xm = Tf,m (Y) —— Fm (Ym) ’
-1 df
X =T, _(Y) = -1
m-1 f,m=1 F m_,;x(ym_,) ,
m
-1
xm-2 = Tf,m-Z(Y) F 2;X(m_§¥m-2) ’
’ *7(3)
X, =T = F () (8-11)
1% 0,0 l;x(2{1 :

Combining the one-to-one property of T., with (B-4) (B-8) and the
matrix rejation, for all Y ¢ [O,l]m R

-] ’
CLp (Y) de(x)

= (8'12)
dY dX

-1
X = Tf (Y)

yields, for the p.d.f. g of 1 at outcome Y, by the standard
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transformation of probability,

dr;' (Y)

det ( —F—)]

g(v) = (17 (1))

= £(T2 (M/F(TE ()

= | [

Remarks

It immediately follows that I is uniformly distributed over (0,137,
iff each scalar marginal random variable component of x is statisti~
cally independent, identically distributed uniformly over [0,1].

Let X, be a random vector uniformly distributed over [O,Hm. Let f
be a given poisitive p.d.f. over R™. Then the random vector
NgT;l(x) has p.d.f. f over R".

Let )\(’ be a given random vector over A" with positive p.d.f. f,
and let h be any given positive p.d.f. over R™. Then the random

df -1 m
vector £=Th (Tf()\(’)) has p.d.f. h over R.
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